skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoerstrup, Simon P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pediatric heart valve disease affects children worldwide and necessitates valve replacements that remodel and grow with the patient. Current valve manufacturing technologies struggle to create valves that facilitate native tissue remodeling for permanent replacements. Here, we present focused rotary jet spinning (FRJS) for implantable medical devices, such as heart valves, to address this challenge. Combining RJS and a focused air stream, FRJS prints FibraValves, micro- and nanofibrous heart valves, in minutes. The micro- and nanoscale features provide structural cues to orient cells at the biotic-abiotic interface, while the centimeter-scale valve shape regulates cardiac flow. We built valves using poly(L-lactide-co-Ɛ-caprolactone) fiber scaffolds, which supported rapid cellular infiltration and displayed native valve-like mechanical properties. Evaluating clinical translatability, we assessed acute performance in a large animal model using a transcatheter delivery approach. These tests indicate that FRJS is a viable method for manufacturing heart valves and future medical implants. 
    more » « less